Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“Metallic Core Technology”…and the Production of One Piece, Hollow Composite Components Which Have Complex Internal Geometry

1992-02-01
920507
Engineers have long been restricted in designing and manufacturing one piece, hollow composite components with complex internal geometry. Complex core pulls in the plastic tool, major concessions made in the actual component design or components joined from several pieces were the early means of producing such components. Progressive thinking led to the use of matrix materials such as sand, salt and wax, which provided a measure of flexibility in allowing designed-in undercut areas. These materials, however, lacked the capability to meet the required demands of dimensional accuracy and internal surface, as well as proving themselves unsuitable for high volume production. The concerns for repetitive dimensional accuracy, quality internal surface and high volume production capability has now been satisfied with the use of low melting temperature metal alloys.
Technical Paper

“Meta-modeling”, Optimization and Robust Engineering of Automotive Systems Using Design of Experiments

2001-03-05
2001-01-3848
This paper describes the application of statistical techniques known as Design of Experiments (D.O.E.) to efficiently use the results of numerical analysis data in order to improve the configuration of automotive systems. The general framework of these techniques is presented in a format aiming at the design engineer as their end user. Besides, a case study is presented with the purpose of illustrating their practical use. The first step of the case study is to build predictive models for the behaviour of the automotive system being developed by means of the Response Surface Method (RSM), using the proper D.O.E. options. Once these predictive models are available, automatic numerical optimization algorithms are used to improve the responses of interest for given operating conditions. Finally, the automotive systems are robust designed taking into account that the operating conditions vary randomly.
Technical Paper

“Mechanical Brake Assist - A Potential New Standard Safety Feature”

1999-03-01
1999-01-0480
This paper presents an innovative brake booster which permits the brake assist function of the electric brake assist system to be implemented with mechanical means. The resultant significant reduction of manufacturing costs enhances the chances for a wide-spread use of this feature in all vehicle classes, thereby making an important contribution to the general improvement of traffic safety. Based on an analysis of the mechanically detectable physical variables for recognizing a panic situation and an evaluation of possible methods of mechanical valve activation, the paper presents a mass production solution and describes its functional properties. In particular, it should be noted that the possibility of controlling the braking pressure within the brake assist function even represents a functional advantage
Technical Paper

“Impact of Design Principles on End-of-Life and Recycling”

2024-01-16
2024-26-0163
Automotive industry is a major contributor to global carbon dioxide (CO2) emissions and waste generation. Not only do vehicles produce emissions during usage, but they also generate emissions during production phase and end of life disposal. There is an urgent need to address sustainability and circularity issues in this sector. This paper explores how circularity and CO2 reduction principles can be applied to design and production of automotive parts, with the aim of reducing the environmental impact of these components throughout their life cycle. Also, this paper highlights the impact of design principles on End-of-Life Management of vehicles. As Design decisions of Component impacts up to 80% of emissions [1], it is important to focus on this phase for major contribution in reduction of emissions.
Technical Paper

“IMC Technology for Light Weighting”

2023-05-25
2023-28-1308
Over the last decade, Climate change due to fossil fuel burning has taken centre stage in all discussions. Automotive sector has come under some flak for being one of the contributors to this Climate Change. Active steps have been taken by Vehicle Manufacturers and their Suppliers to address this issue. This sector has been facing below challenges to reduce pollutant in the air by A. Reducing Emissions, B. Increasing Energy Efficiency C. Use of Renewable Energy. One of the many alternatives by the Automotive Industry was to have a phased introduction to Electric Vehicles (EV), Hybrids, Fuel cells and other variants. As various emission norms and safety requirements takes Centre stage, it invariably, increases the weight of the vehicle. Now a days, Vehicles are having challenges to make it lightweight to achieve Range for an EV and improve fuel efficiency without sacrificing safety.
Technical Paper

“Herschel-Quincke Spiral” A New Interference Silencer

2003-05-05
2003-01-1722
Over the last ten years there has been a steady growth in the market share of light-duty diesel engines, especially in Europe. At the same time, a general trend in petrol engine development has been seen, in which normal aspirated engines are being replaced by downsized turbocharged engines. Therefore, NVH engineers have to deal with new challenges. Turbochargers produce an aerodynamic noise in the frequency range above 1000Hz, which might influence the exterior and interior noise level. As a result, the additional requirement for acoustical components to reduce this flow noise is going to pose an increasing challenge for air intake system suppliers. This paper describes a new design of well-known wide band silencer first mentioned by A. Selamet, N.S.Dickey and J.M.Novak [1,2]. The silencer works according to the interference principle. The sound is guided into two or more parallel pipes of different lengths.
Technical Paper

“Getting the Best Out of 12 Volts” The Development of an Advanced Electrical Architecture Vehicle

1994-03-01
940368
The paper focuses and develops issues raised by the SAE paper ‘THE FUTURE OF VEHICLE ELECTRICAL POWER SYSTEMS AND THEIR IMPACT ON SYSTEM DESIGN’ [1] and describes the realisation of a vehicle with a 12 V architecture of flexible configuration and a power management function. The paper describes the methodology, reasoning and mission behind the creation of the vehicle, developed after collaborative exercises in Europe and the USA, and resulting in a joint programme involving a major vehicle manufacturer and a European system supplier. The electrical system is becoming the focus of activity world-wide due to rapid changes in vehicle requirements, in the areas of safety, environmental and functional demands. There are opportunities for:- (a) Improved starting (b) Integrated management of power generation and demand. (c) Higher system integrity (d) Higher efficiency (e) Improvement of the vehicle electrical environment, giving benefits in component cost.
Technical Paper

“Geometric Dimensioning and Tolerancing”

1968-02-01
680488
Geometric dimensioning and tolerancing is both a “language” and a “technique.” Its objective is to facilitate design, production, and inspection and, simultaneously, provide the most economic results. This paper describes the implementation and practice to accomplish these through illustrating methods to state design requirements specifically and clearly and to provide for maximum producibility, uniformity of interpretation, etc. The need to reflect a common objective for design, production, and inspection via the stated drawing requirement is emphasized. Application and interpretation of geometric characteristics (emphasizing symbology), fundamentals, rules, etc. are presented. Basis for the content of this paper is USASI Y14.5-1966 “Dimensioning and Tolerancing for Engineering Drawings.”
Technical Paper

“Fitting Data”: A Case Study on Effective Driver Distraction State Classification

2019-04-02
2019-01-0875
The goal of this project was to investigate how to make driver distraction state classification more efficient by applying selected machine learning techniques to existing datasets. The data set used in this project included both overt driver behavior measures (e.g., lane keeping and headway measures) and indices of internal cognitive processes (e.g., driver situation awareness responses) collected under four distraction conditions, including no-distraction, visual-manual distraction only, cognitive distraction only, and dual distraction conditions. The baseline classification method that we employed was a support vector machine (SVM) to first identify driver states of visual-manual distraction and then to identify any cognitive-related distraction among the visual-manual distraction cases and other non-visual manual distraction cases.
Technical Paper

“Fatigue Behavior of Sheet Steels for Automotive Industry”

1992-11-01
921439
Carbon and rephosphorized pre-strained sheet steels for cold drawing forming operations were studied and the tensile, high cycle fatigue and fatigue crack propagation properties were determined. The fatigue limit was found to be higher for 20% than for 1% pre-strained condition. Threshold stress intensity factors (▵Ků) of 5.29 MPa. m1/2 for rephosphorized steel and 7.07 MPa. m1/2 for carbon steel. Critical crack lenghts were calculated by ▵Ků and fatigue limit data using the Lukas-Klesnil short-crack criterion. Through fractographic analysis it was possible to determine the general behavior of tested materials near threshold.
Technical Paper

“Fair” Comparison of Powertrain Configurations for Plug-In Hybrid Operation Using Global Optimization

2009-04-20
2009-01-1334
Plug-in Hybrid Electric Vehicles (PHEVs) use electric energy from the grid rather than fuel energy for most short trips, therefore drastically reducing fuel consumption. Different configurations can be used for PHEVs. In this study, the parallel pre-transmission, series, and power-split configurations were compared by using global optimization. The latter allows a fair comparison among different powertrains. Each vehicle was operated optimally to ensure that the results would not be biased by non-optimally tuned or designed controllers. All vehicles were sized to have a similar all-electric range (AER), performance, and towing capacity. Several driving cycles and distances were used. The advantages of each powertrain are discussed.
Technical Paper

“Evaluation of the Drift of vehicle Inspection/Maintenance Emission Analyzers in use- A California Case Study”

1989-05-01
891119
Quality assurance (QA) in motor vehicle emissions inspection/maintenance (I/M) programs is a continuing concern, especially in decentralized programs with hundreds or even thousands of licensed stations. The emissions analyzers used in such stations are an important focus of governmental QA efforts because of the central role of analyzers in determining which vehicles need to be repaired. Therefore, the In-use performance of I/M emission analyzers has a large impact on the quality of 1/M programs as a whole. This paper reports on the results of an investigation in California designed to determine in-use performance of emission analyzers in the field. The investigation was designed to evaluate both drift rates and the ability of analyzer systems with automatic gas calibration capability to correct analyzer responses outside of accepted tolerances.
Technical Paper

“Ease of Driving” Road Classification for Night-time Driving Conditions

2016-04-05
2016-01-0119
This paper is an extension of our previous work on the CHASE (Classification by Holistic Analysis of Scene Environment) algorithm, that automatically classifies the driving complexity of a road scene image during day-time conditions and assigns it an ‘Ease of Driving’ (EoD) score. At night, apart from traffic variations and road type conditions, illumination changes are a major predominant factor that affect the road visibility and the driving easiness. In order to resolve the problem of analyzing the driving complexity of roads at night, a brightness detection module is incorporated in our end-to-end nighttime EoD system, which computes the ‘brightness factor’ (bright or dark) for that given night-time road scene. The brightness factor along with a multi-level machine learning classifier is then used to classify the EoD score for a night-time road scene. Our end-to-end ‘Night-time EoD system’ is a real-time onboard system implemented and tested on road scene data collected in Japan.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
Technical Paper

“Digital Prototype” Simulations to Achieve Vehicle Level NVH Targets in the Presence of Uncertainties

2001-04-30
2001-01-1529
“Digital Prototype” simulations have been used at DaimlerChrysler to achieve vehicle level NVH objectives. The effectiveness of these simulations to guide the design when faced with vehicle parameter uncertainties is discussed. These uncertainties include, but are not limited to, material properties, material gauges, damping, structural geometry, loads, boundary conditions and weld integrity. Manufacturing and assembly processes introduce variations in the nominal values of these parameters resulting in a scatter of vehicle level NVH simulation responses. An example of a high frequency NVH concern will be studied and modified to arrive at robust design guidance when faced with uncertainty. The validity of a “deterministic digital prototype” simulation model and its relevant role as a “trend predictor” rather than “absolute predictor” tool in guiding the design is also discussed.
Technical Paper

“Cromard” Thin Wall Steel Liners and Hard Chrome Plated Liners for High Production Gasoline and Diesel Engines

1964-01-01
640361
This paper, confined to the application of hard chrome plated liners to high-speed four-stroke diesel and gasoline engines, illustrates the increase in their popularity in the United Kingdom, and the advanced production methods which make this economically possible. The need for balanced engine life has long been apparent and is even more important today, the growth of motor transport having outstripped repair facilities. Iron bore life has been surpassed by improvement in the life of other component parts in the modern diesel engine. The provision of hard chrome plated liners can restore the balance. Further development and turbocharging of diesel engines has shown the need for a bore material capable of preventing scuffing and galling at elevated temperatures. Hard chrome has already proved itself in four-stroke engines under these conditions.
Technical Paper

“Concept to Concrete” Development of a Truck Type Street Sweeper

1979-02-01
790879
A new truck type street sweeper has been developed which incorporates some of the sweeping advantages of a three wheeled sweeper (tricycle steer) and the transport advantages of a legal highway truck. It offers major productivity improvements through better operator environment and decrease of nonsweeping time in the operational cycle. It is possible for a small “short line” special purpose vehicle manufacturer to develop, test, and produce such a vehicle and meet Federal regulatory requirements with limited “In house” design and testing facilities. Here this was accomplished through judicious augmentation by outside specialized design and testing organizations.
X